Camera interface Trade Study

Big picture of the system

Processor board: Ultra 96

Figure 3 – Ultra96-V2 Topology

MIPI: Mobile Industry Processor Interface

LVDS: Low Voltage Differential Signaling

MIPI csi-2: is a sensor interface commonly used in embedded systems to connect

an image sensor to an embedded circuit board that controls it and processes

image data

96 Boards DUAL MIPI Adapter Mezzanine

OV5640

Building a MIPI CSI-2 Video Pipeline in Programmable Logic

Doing image processing in Ultra 96 (OpenCV)

Advantage: stable, fast, compatibility

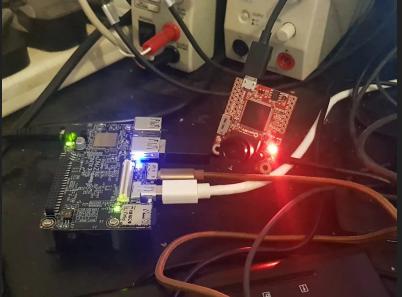
Predictable issue: technical (port collection - complex interface - requires effort)

Ultra96 provides a 96Boards compatible High Speed Expansion Connector. An Amphenol FCI 61082-061409LF (or compatible) 60 pin low profile 0.8mm receptacle is specified.

Table 4 shows the pinout of the High Speed Expansion Header (Ultra96 column) and the differences from the 96Boards specification (96Boards column). With the exception of SD, I2C2 and I2C3, all dedicated interfaces specified by 96Boards are replaced with GPIO. All HP_GPIO are routed as differential pairs.

Table 4 - High Speed Expansion Connector

Xilinx	96Boards	Pin #	
PS_SPI0_MOSI	SD_DAT0/SPI1_DOUT	1	
n/c	SD_DAT1	3	
n/c	SD_DAT2	5	
PS_SPI0_CS	SD_DAT3/SPI1_CS	7	
PS_SPI0_SCLK	SD_SCLK/SPI1_SCLK	9	
PS_SPI0_MISO	SD_CMD/SPI1_DIN	11	
GND	GND	13	
HD_GPIO_CC	CLK0/CSI0_MCLK	15	
HD_GPIO_CC	CLK1/CSI1_MCLK	17	
GND	GND	19	
HP_GPIO_CC+	DSI_CLK+	21	
HP_GPIO_CC-	DSI_CLK-	23	
GND	GND	25	
HP_GPIO+	DSI_D0+	27	
HP_GPIO-	DSI_DO-	29	
GND	GND	31	
HP_GPIO+	DSI_D1+	33	
HP_GPIO-	DSI_D1-	35	
GND	GND	37	
HP_GPIO+	DSI_D2+	39	
HP_GPIO-	DSI_D2-	41	
GND	GND	43	
HP_GPIO+	DSI_D3+	45	
HP_GPIO-	DSI_D3-	47	
GND	GND	49	
USB_D+	USB_D+	51	
USB_D-	USB_D-	53	
GND	GND	55	
HP_GPIO	HSIC_STR	57	
HP_GPIO	HSIC_DATA	59	


Pin #	96Boards	Xilinx
2	CSI0_C+	HP_GPIO+
4	CSI0_C-	HP_GPIO-
6	GND	GND
8	CSI0_D0+	HP_GPIO+
10	CSI0+D0-	HP_GPIO-
12	GND	GND
14	CSI0_D1+	HP_GPIO+
16	CSI0_D1-	HP_GPIO-
18	GND	GND
20	CSI0_D2+	HP_GPIO+
22	CSI0_D2-	HP_GPIO-
24	GND	GND
26	CSI0_D3+	HP_GPIO+
28	CSI0_D3-	HP_GPIO-
30	GND	GND
32	I2C2_SCL	PS_I2C0_SCL
34	I2C2_SDA	PS_I2C0_SDA
36	I2C3_SCL	PS_I2C1_SCL
38	I2C3_SDA	PS_I2C1_SDA
40	GND	GND
42	CSI1_D0+	HP_GPIO+
44	CSI1_D0-	HP_GPIO-
46	GND	GND
48	CSI1_D1+	HP_GPIO+
50	CSI1_D1-	HP_GPIO-
52	GND	GND
54	CSI1_C+	HP_GPIO+
56	CSI1_C-	HP_GPIO-
58	GND	GND
60	Reserved	Reserved

USB: Universal Serial Bus

Its characteristic is the communication line is simple, as long as a pair of transmission lines can achieve two-way communication, thus greatly reducing the cost, especially suitable for long-distance communication, but the transmission speed is slower.

Product:

OpenMV

OpenMV Camera can offload some of the image processing to the camera. Meaning the image frames received by our Ultra96 already have faces identified, eyes tracked or Sobel filtering, it all depends on how we set up the OpenMV Camera.

Advantage: Easy to connect with Ultra96, flexibility

Disadvantage: slow,

MIPI CSI-2 offer more bandwidth than USB 3.0 (5 Gbit/s)

Requirements Table

	weights	USB camera	MIPI camera	Score USB	Score MIPI
Latency	3	3	5	9	15
Accuracy	9	5	5	45	45
Memory	5	5	1	25	5
Cost Impact	1	5	5	5	5
Schedule impact	7	6	2	42	14
Technical opportunity	5	5	3	25	15
Technical Risk	9	5	2	45	19
Total				196	118

Reference

MIPI:

https://www.hackster.io/bluetiger9/stereo-vision-and-lidar-powered-donkey-car-575769#toc-8--mipi-adapter-for-ultra96-10

https://www.hackster.io/adam-taylor/mipi-procesing-with-ultra96-777721

USB:

https://www.hackster.io/adam-taylor/accelerating-image-processing-with-pyng-openmv-cam-50ba7a

Difference (Chinese version): <u>https://www.weibo.com/ttarticle/p/show?id=2309404401905123066001</u>